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Structured Abstract 
 
Purpose: Compare the performance of preventive measures ranked using a previously piloted 

longevity-estimating algorithm for Individualizing Precision Prevention (IPP) with rankings from 
Primary Care Providers (PCPs).   

Scope:    One IPP algorithm compared for concordance with collective rankings from 40 PCPs. 
Methods: Technology development followed by the use of a special ranking questionnaire with 

12 realistic patient scenarios culminating in data collection and analysis involving Length-
dependent Rank-biased Overlap (LDRBO) calculations.   

Results:  For all 12 scenarios, comparing the IPP algorithm to the combined rankings from all 
PCPs yields a mean value of .45, corresponding to a moderate level of concordance or 
agreement between the rankings of the IPP algorithm and the provider rankings. 
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Purpose and Objectives of Study 
 
Purpose 
 

Since 1984, the United States Preventive Services Task Force (USPSTF) has conducted 
numerous systematic reviews of the evidence for multiple preventive services. In this manner, the 
USPSTF determines the level of scientific evidence supporting a preventive care 
recommendation, assigning well-supported recommendations evidence grades of A or B1. 

Currently, USPSTF guidelines recommend about 50 preventive care services based on grade 
A or B evidence. However, the US health system has yet to maximize the benefit of these 
preventive care recommendations. Problems include overutilization and underutilization of 
recommended preventive care services and large subpopulation disparities in preventive care 
and related health outcomes. Currently, the number of recommended preventive services is more 
than can be consistently applied in primary care and is still growing. To optimize social benefit, 
capabilities to prioritize preventive services precisely are needed. 

The idea of the Learning Health System (LHS), which we think of as both an inspiring concept 
and a systematic and scalable set of methods, has gained increasing recognition since the 
appearance of a seminal report from the Institute of Medicine3. The LHS “learns” through a cyclical 
process that engages an interested community in the assembly and analysis of data relevant to 
an important problem, which leads to the discovery of new knowledge from the data5. The learning 
cycle is completed by direct application of that knowledge to change practice, typically making 
use of recommendations individualized to the characteristics of each patient and tailored to the 
needs of care providers. In this project, we take advantage of the existing USPSTF 
recommendations, which constitute high-quality knowledge, and focus on enhancing the 
knowledge-to-practice component of the learning cycle to facilitate personalized, prioritized 
uptake of these recommendations to optimize health.  

More specifically, we apply LHS methods to advance toward effective Individualized Precision 
Prevention (IPP) for non-pregnant adults. The IPP approach both personalizes and prioritizes 
preventive services systematically and scalably. This work is supported by the Knowledge Grid 
(KGrid), a broadly applicable technical platform created at the University of Michigan to support 
the knowledge-to-practice aspect of LHS4. KGrid includes Knowledge Objects, a digital Library 
within which to hold and manage them, and an Activator with which to deploy them as digital 
services. Enhancing this shared infrastructure, the Substitutable Medical Applications and 
Reusable Technologies (SMART) initiative supports an app ecosystem to extend the capabilities 
of EHRs5. For this project, we used KGrid to build and test a new web application capable of 
automatically personalizing and prioritizing preventive measures to achieve IPP.   

The main purpose of this study is to address the challenge of providing evidence-based IPP. 
To achieve that purpose, we demonstrate how KGrid, when used to manage and deploy 
computable knowledge, and open source web application technologies can work together to 
quickly generate IPP information in the form of patient-specific, rank-ordered lists of 
recommended preventive services based on evident relative benefits for health. The results of 
the project include sharable computable USPSTF knowledge objects, a shareable web app, and 
initial insights into how to effectively use these resources to individualize preventive services. 
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Objectives 
 
Objective 1 

Use KGrid to design and develop computable knowledge objects for USPSTF A & B 
recommendations, along with an executive object capable of applying computable risk and benefit 
models, forming a core knowledge object collection for Individualized Precision Prevention (KOs-
4-IPP). 
 
Objective 2 

Design, develop, and test a shareable SMART IPP APPLICATION that can be integrated with 
various EHRs and which draws on KOs-4-IPP services from KGrid to provide individualized 
precision prevention information.  
 
Objective 3 

Conduct a study with primary care providers as subjects to assess the potential utility of IPP 
information.  
 
 
Scope and Methods of Study 

 
Scope 
 
Overview and General Context. 

The practice context for this work is the primary care environment where decisions are made 
about which preventive medical services to offer to individual patients. We prepared technology 
and a system capable of supporting individual precision prevention (IPP) and then performed a 
content validation and utility study of the concordance of the IPP system’s output with providers’ 
self-reported current approaches to implementing evidence-based preventive measures. 
 
Setting and Participants. 

For the study of concordance, we recruited 40 PCP attendees at a regional, professional 
meeting, each with five or more years of clinical practice experience. Each participant was 
randomly assigned to one of the four sets containing 12 scenarios and was given a list of the 
USPSTF A and B recommendations for which the patient described in each scenario is eligible. 
Each subject worked through their randomly assigned set of 12 scenarios in a random sequence 
to limit order effects. Our experimental protocol had three steps. First, after reading a scenario, 
each subject was provided a list of all of the preventive services for which the individual described 
by the scenario is eligible. They were asked to rank the relative importance of each service, in 
descending order of importance. Second, because there may be differences between PCP 
perceptions of importance and how they would decide to address preventive services in practice, 
we asked subjects to identify and confirm the one preventive service they would choose to discuss 
first with each hypothetical patient if time was limited as during a routine clinic visit. Third, subjects 
filled out a questionnaire with several open-ended questions. The open questions allowed PCPs 
to share their rationale for ranking preventive services (by importance) as they did. 
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Methods 
 
Approach for Aim 1 

Our approach to achieving Aim 1 involved technical design and software development work. 
Supporting this effort is our prior work on the Knowledge Grid (KGrid) technical infrastructure 
program over the past several years. From 2016-2018, we designed, developed, and formally 
modeled digital knowledge objects (KOs) and published a paper on the conceptual design of KOs.  

KOs are packaged compound digital objects used for externalizing and modularizing computer 
logic for shareable, interoperable clinical decision support. KOs have three main parts. First and 
foremost, KOs hold a computable biomedical knowledge payload. The computer-processable 
payload could be expressed using executable rules, or a mathematical function expressing the 
results of empirical analysis (e.g., a regression equation), or as a table of known values (e.g., 
population statistics from CDC). Second, KOs have a service description. The service description 
part of KOs contains information to tell people and machines how to interact with the computable 
biomedical knowledge payload held in the KO. For this project, the service description specifies 
an application programming interface (API) for each KO. Third, KOs include metadata describing 
their content, origin, lifecycle, etc. These metadata are important for making KOs findable, 
accessible, interoperable, and reusable (the FAIR principles). 

Prior to starting this project, we developed 70 KOs of different types, including some KOs 
holding statistical risk models and others holding computable guidelines. For this project, we used 
previously tested technical methods to build the "KOs-4-IPP" collection. These technical methods 
included encoding USPSTF A and B recommendation information, mathematical population 
health functions, and tables of public health statistics using JavaScript; describing KO APIs in 
service descriptions using the OpenAPI 3.0 standard, storing KOs in GitHub, and packaging KOs 
as ZIP files. The new KOs-4-IPP collection essentially modularized computable knowledge using 
KOs,  allowing that knowledge to be curated, combined, deployed, and updated by our study team 
using KGrid technology. More information about KGrid technology is provided in Appendix C.  

As part of the KOs-4-IPP collection, we designed and developed an Executive KO for the first 
time. This KO plays a special role in the KGrid technical infrastructure. By design, Executive KOs 
have computer-processable payloads that orchestrate computations using other KOs. For this 
project, we first upgraded the KGrid Activator to support the capabilities of Executive Objects with 
JavaScript payloads. The KGrid Activator is a Java microservice built using Spring tooling. The 
Activator encapsulates or otherwise integrates various programming-language runtimes, 
including, in this case, both the existing Nashorn and V8 JavaScript runtimes. Once the Activator 
was suitably upgraded, the first basic Executive KO with a JavaScript payload was designed and 
tested. From there, we designed and tested a more sophisticated Executive KO to meet the needs 
of this project. 
Approach for Aim 2  

Our activities to achieve Aim 2 focused on developing an easy-to-use software app. Our original 
intent was to develop a SMART app. However, at the time of our app development for this project, 
we found most of the inputs we needed for an IPP were not available to us as FHIR resources 
from the EHR platforms of interest. For this reason, we pivoted to create an IPP web app and are 
now returning to work on a FHIR-based IPP app in 2020. 
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For this project, our web app development work unfolded in two phases. The first phase was 
for design and development. The second phase was for testing. Using iterative, agile, test-driven 
software application development methods, we designed and built an IPP web app that runs in 
common web browsers. Our IPP web app is a JavaScript app built using the Vue framework.  

The IPP web app computes with a specified list of input data elements about an individual. The 
app relies on the KOs-4-IPP collection and engages the Executive Object from the collection to 
do all of its individualized precision prevention computations. We deployed the IPP web app on a  
common webserver, from where it can be accessed online.  

To test the IPP web app, we used synthetic test patient data provided by Dr. Glen Taksler of 
the Cleveland Clinic. For these data, the expected IPP outputs were previously known. Dr. Taksler 
and Dr. Caverly reviewed the outputs computed by our IPP web app and confirmed that the 
outputs were appropriate and in line with their combined experience and expectations. 
Approach for Aim 3  

Goal of the Study:  
To evaluate the potential importance of having computed IPP priorities readily available for 

point-of-care decision-making by primary care providers (PCPs), we conducted a laboratory 
experiment, using realistic patient scenarios, to test the concordance between the computed IPP 
priorities and experienced PCPs’ perceptions about the relative importance of specific preventive 
services.  

We hypothesized that a very high concordance would indicate that the computed priorities, 
offered as advice, would not add novel information in practice, although it still might be useful to 
confirm clinicians’ own judgments. Moderate concordance would suggest that the computed 
priorities an opportunity to improve the effects of preventive care. Low concordance would be of 
some concern, calling into serious question either the validity of the algorithm or that of clinicians’ 
judgments about the preventive services of most potential benefit to their patients. 

Overall Study Design:   
We systematically developed 12 patient scenarios, spanning a range of health statuses and a 

range of eligibilities for preventive services.  We developed a data collection instrument to be 
completed by primary care practitioners (PCPs) under proctored conditions.  The instrument 
included all twelve scenarios and asked practitioners, after reading each scenario, to order in 
priority those preventive services for which the patient described in the scenario was eligible.  The 
scenarios as, presented in the instrument, included all of the clinical data used by the Taksler 
algorithm6. The instrument was created in two similar versions with just one key difference. The 
“Green” version asked for priority rankings based on extending the patient's life and the “Blue” 
version asked for rankings in favor of maintaining the patient’s overall health. Because the 
survey was NOT intended to test subjects’ knowledge of USPSTF recommended preventive 
services, the survey clearly indicated which USPSTF recommended preventive services each 
simulated patient was eligible for.  Independently, we computed the priority of each of the 
preventive services using the Taksler algorithm6 as implemented in the Knowledge Grid.  We 
administered the survey to 40 PCPs, half randomly assigned to each version and with each PCP 
encountering the scenarios in random order.  We then compared statistically the rankings offered 
by the PCPs with those computed by the Taksler algorithm6.  
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Patient Scenarios:  
Collectively, the set of 12 scenarios spanned the spectrum of preventive health services through 

systematically engendered variance across demographics, age, health habits, overall health 
status, and risk profiles. Each scenario script included the structured data necessary to compute 
all applicable Grade A and B USPSTF recommendations as well as the priorities assigned to each 
recommendation via the Taksler algorithm6.  Augmenting the structured data, we wrote portrayals, 
in prose, describing each of the “patients”, taking care not to add extraneous clinical details that 
could influence clinician decisions about preventive care services.  

We used the American Society of Anesthesiologists (ASA) health status classes as the primary 
stratification factor7. ASA Class I represents people who are healthy non-smokers. ASA Class II 
represents mild diseases only without substantive functional limitations, such as current smokers, 
and those with controlled diabetes or hypertension. ASA Class III is for those with poorly controlled 
disease (in our scenarios: those with poorly controlled diabetes or high blood pressure and who 
are morbidly obese with a Body Mass Index > 40 and who have experienced a prior heart attack). 
We created 4 “health status” scenarios in each ASA Class--2 males and 2 females--and we 
identified the preventive services for which each “patient” was eligible. One of the 12 health status 
scenarios is displayed in Figure 1 below: 

 

Health status: ASA Class III 
59-year-old woman: 
BMI=46; poorly controlled DM and HTN; current smoker 
History of prior heart attack with stents placed 3 years ago 
  
She is eligible for the following USPSTF recommended preventive services: 
Cervical cancer screening; CRC screening; HIV screening; HTN screening; Alcohol misuse; 
Tobacco cessation; Aspirin use; BRCA-related cancer risk assessment; Breast cancer 
preventive medications (if high risk); Breast cancer screening; Chlamydia and Gonorrhea 
screening; Depression screening; Healthful diet & activity counseling; Hepatitis C screening; 
Lung cancer screening; Osteoporosis screening (if high risk), Sexually transmitted infections 
counseling; Statin use; Weight loss interventions; Skin cancer counseling 

Figure 1: An example health status scenario. 

 
We then embellished each of the 12 health status scenarios, as shown above, with more 

complete clinical information consistent with the patient’s overall health status.  These more 
detailed descriptions contained all information required to compute, using the Taksler algorithm, 
the priority of each service.  These data were added based on the clinical judgment of an 
experienced general internist who was not aware of how the algorithm would rank these eligible 
preventive services. 

The Data Collection Instrument:   
We developed a data collection instrument from the patient scenarios. For each fictitious but 

highly-realistic patient scenario, the data collection instrument has two parts shown in Figures 2 
and 3. An example of the first part of our data collection instrument describing the scenario for 
one of our “patients” is shown in Figure 2 below. 
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Figure 2: Example Patient Scenario from Data Collection Instrument 



 7 

The second part of our data collection instrument provides a study participant response form 
listing all of the USPSTF “A and B” preventive services for which the patient described in the 
scenario is eligible. This form is used to collect the study subject’s ranking of their “Top 5” 
preventive services to be implemented for the patient in practice, as illustrated in Figure 3 
below. Subjects were also asked to rate their confidence in their Top 5 rankings. 

 

 
 

Figure 3: Priority and Confidence Elicitation 

 
Before using our 12 case scenarios for our principal data collection, we performed a pilot study 

with three PCPs to get feedback on the clarity of our instructions. Minor changes to the content 
and the format of the instrument were made based on their questions and suggestions. 

Procedure:  
Before beginning our study, we created 40 packets, each one containing a randomly ordered 

set of the 12 scenarios and preventive services lists. We put the scenarios in a random order to 
mitigate order effects knowing that our subjects would work through each packet scenario-by-
scenario in a serial fashion.  Half of the packets, randomly assigned, asked for priority rankings 
based on extending the patient's life and the other half asked for rankings in favor of maintaining 
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the patient’s overall health. 
We recruited 40 PCPs from the State of Michigan, the majority of whom participated in our study 

during a Family Medicine conference held in Ann Arbor, Michigan on October 2-3 2019. A few of 
the study participants were recruited from the greater Ann Arbor area after the conference. For 
data collection, each participant was randomly issued one of the experimental packets with 12 
scenarios and corresponding USPSTF A & B preventive service recommendation lists.  

Analytical Plan:  
To compute the relationship between the providers’ priorities and those generated by the 

algorithm, we employed the Length-dependent Rank-biased Overlap (LDRBO) statistic 
developed by co-investigator Philip Boonstra8.  This statistic is necessary to support this analysis 
because traditional measures of correlation, such as Spearman’s 𝜌𝜌 or Kendall’s 𝜏𝜏, are 
inappropriate for ranking partial lists of unequal length. The LDRBO statistic is defined in more 
detail in Appendix B. 

We compared the providers’ and the algorithm’s rankings by, first, aggregating the 40 providers’ 
lists of recommendations into a single derived ‘consensus’ list of recommendations, defined as 
the hypothetical list of exactly three recommendations that maximizes the median LDRBO 
similarity across the 40 providers. To reflect the reality of a clinical setting in which a provider can 
typically make and enact at most three recommendations in a visit, we considered only the top 
three rankings from the algorithm and each provider. We then computed the LDRBO statistic 
relating the algorithm’s rankings to the consensus rankings of the providers. We conducted the 
analysis separately for the forms using the “green” and “blue” ranking criteria as described in the 
methods section above, and also for both form versions combined. 
 

Results 

 
Results for Aim 1  

Overall, the study team successfully completed the needed technical work to achieve Aim 1. 
The KOs-4-IPP collection of Knowledge Objects includes 1 Executive KO, 1 Recommendation 
List KO, 1 Life Table KO, 2 Total Background Risk KOs for figuring population-level risks, 11 
Patient Background Risk KOs for scoring individual patient risks (e.g., risk of cardiovascular 
disease), 17 USPSTF Recommendation Net Benefit Calculator KOs, 7  Patient-Derived Feature 
KOs, 1 Life Expectancy calculator  KO, and 1 Life Expectancy Gain KO. These 42 KOs comprise 
the KOs-4-IPP collection and are described in more detail in Appendix A. 

For these results, two KOs out of the 42 in the KOs-4-IPP collection warrant further description. 
The first of these is the IPP project's new Executive KO. Because the Executive Object was 
designed and developed first for this project, its design and development are significant project 
results in their own right. The key to our JavaScript-based Executive Objects' capabilities is to 
have a JavaScript function that calls other KO API endpoints after those endpoints have been 
established in the same running instance of the KGrid Activator. The function inside the Executive 
Object payload that does is shown  in Figure 4 below. 
 

function execute(endpoint, inputs){ 
  return context.getExecutor(endpoint).execute(inputs) 
} 

Figure 4: JavaScript function supporting the capability to have Executive Objects 
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Note how the JavaScript function above accepts and used two parameters, one called endpoint 
and the other called inputs. Using the KGrid Activator integrated with a JavaScript runtime, this 
function accepts and processes a locally-available API endpoint  
(e.g., ipp-bmicalculator/v0.0.3/bmi) and appropriate inputs for engaging the endpoint to 
compute (e.g., height and weight). Within the scope of the Executive Object, the example above 
of a call to the execute function would return a computation of a patient's body mass index (BMI). 
Thus, the execute function, working in conjunction with the Activator, enables Executive KOs to 
perform their executive role by engaging APIs that arise from other KOs.  

The second KO of interest to further describe in these results is the USPSTF Recommendation 
List KO. This KO uses facts about an individual to determine which USPSTF Recommendations 
apply to that individual's care. Inside this KO we declare inclusion or exclusion criteria for each 
USPSTF Recommendation covered by the IPP-4-KOs collection. Below in Figure 5 is one 
example of this. 

 
"aaascreening":{ 
    "name": "Abdominal Aortic Aneurysm: Screening", 
    "shortText":"Abdominal Aortic Aneurysm: Screening", 
    "description":"The USPSTF recommends one-time screening for abdominal aortic aneurysm (AAA) with 
ultrasonography in men ages 65 to 75 years who have ever smoked. ", 
    "type": "Screening", 
    "releaseDate": "June 2014", 
    "grade":"B", 
    
"uspstflink":"https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/abdominal-
aortic-aneurysm-screening", 
    "basePopulation": { 
      "population":"Male", 
      "minimumAge":"65", 
      "maximumAge":"75" 
    }, 
    "benefitko":"ipp-aaascreening/v0.0.3/netbenefit" 

  }, 

Figure 5: Encoded inclusion and exclusion criteria for the Abdominal Aortic Aneurysm Screening Preventive Service Recommendation  
 

The example in Figure 5 covers the inclusion criteria for abdominal aortic aneurysm screening. 
At the moment with the KOs-4-IPP collection was being developed, this recommendation 
pertained only to men between the ages of 65 and 75 years. For that reason, we encoded these 
inclusion criteria so that, with sex and age inputs, we can determine whether or not this 
recommendation applies to any adult. 

The other KOs in the KO-4-IPP collection are all marshaled by the Executive KO and needed 
to compute relevant USPSTF recommendations and coinciding individualized prevention services 
priorities based on life-gain estimates for any adult.   
 
Results for Aim 2 

The IPP web app we created to test and trial the KOs-4-IPP collection is deployed online here: 
https://kgrid-objects.github.io/ipp-collection/web/#/ . 

https://kgrid-objects.github.io/ipp-collection/web/#/
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The user interface for the IPP web app supports a single patient process of prioritizing relevant 
USPSTF A & B recommendations. As portrayed in Figure 6 below, a panel of data elements about 
an individual patient characteristics arrayed on the left are used to compute the relevance and 
utility of USPSTF A&B recommendations listed on the right. To do these computations, the KOs-
4-IPP collection is instantiated, made runnable, and engaged by the web app using the KGrid 
Activator. 

 
Figure 6: User View of IPP web app showing patient characteristics on the left and ranked relevant preventive services on the right 

 
In the example portrayed in Figure 6, the IPP web app has ranked relevant USPSTF A & B 

recommendations for a fictitious 71-year-old black female who is 6 feet tall, weighs 155 pounds, 
and has low blood pressure (105/68). In her case, the greatest life-gain value estimated (0.11 
years) would come from implementing a USPSTF A & B recommendation for Breast Cancer 
Screening. Colorectal cancer screening and a healthy diet are also estimated to bring modest 
gains in her longevity. More results like these computed for individuals are featured in the results 
for Aim 3, which come next.  

 
Results for Aim 3 

Table 1, below, provides the LDRBO-based comparison of ordered lists arising from the 
algorithm versus a consensus-based aggregation of the 40 providers’ ranked lists, combined and 
separately for the “Green” and “Blue” ranking criteria. Results are presented separately for each 
of twelve scenarios, arranged by decreasing values of LDRBO. A legend to decipher the codes 
for unique preventive services in Table 1 can be found immediately below in Table 2. 
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Scenario Source of 
Ranking 

Top-
ranked 
Service 

Second-
ranked 
Service 

Third- 
ranked 
Service 

Value 
of 

LDBRO 

Number 
of 

Shared 
Services 
in Top 3 

Scenario Source of 
Ranking 

Top-
ranked 
Service 

Second-
ranked 
Service 

Third- 
ranked 
Service 

Value 
of 

LDBRO 

Number 
of 

Shared 
Services 
in Top 3 

4 Algorithm BRE CRC DIE   2 Algorithm LUN STA DIE   

 Consensus 
(ALL) BRE CRC CER 0.89 2   Consensus 

(ALL) STA DIE CRC 0.39 2 

 Consensus 
(GREEN) BRE CRC CER 0.89 2   Consensus 

(GREEN) STA DIE ASA 0.39 2 

 Consensus 
(BLUE) BRE CRC CER 0.89 2   Consensus 

(BLUE) STA DIE CRC 0.39 2 

6 Algorithm BP SMO ALC   7 Algorithm CRC DIE AAA   

 Consensus 
(ALL) SMO BP ALC 0.67 3   Consensus 

(ALL) DIE STA CRC 0.39 2 

 Consensus 
(GREEN) SMO BP DIE 0.56 2   Consensus 

(GREEN) DIE STA CRC 0.39 2 

 Consensus 
(BLUE) BP DIA BRE 0.61 2   Consensus 

(BLUE) DIE STA AAA 0.39 2 

5 Algorithm SMO BP DIE   8 Algorithm DIE WEI LUN   

 Consensus 
(ALL) SMO BRE CER 0.61 1   Consensus 

(ALL) STA DIE WEI 0.39 2 

 Consensus 
(GREEN) SMO BRE CER 0.61 1   Consensus 

(GREEN) STA DIE WEI 0.39 2 

 Consensus 
(BLUE) SMO BRE DIE 0.72 2   Consensus 

(BLUE) STA WEI DIE 0.39 2 

11 Algorithm SMO DIE BP   10 Algorithm BRE CRC DIE   

 Consensus 
(ALL) SMO CRC STA 0.61 1   Consensus 

(ALL) OST DIE BRE 0.22 2 

 Consensus 
(GREEN) SMO OST STA 0.61 1   Consensus 

(GREEN) OST DIE CRC 0.22 2 

 Consensus 
(BLUE) SMO DIE STA 0.89 1   Consensus 

(BLUE) OST DIE BRE 0.22 2 

1 Algorithm DIE CRC ASA   12 Algorithm DIE ALC SMO   

 Consensus 
(ALL) CRC DIE DEP 0.56 2   Consensus 

(ALL) BP SMO ALC 0.22 1 

 Consensus 
(GREEN) CRC DIE DEP 0.56 2   Consensus 

(GREEN) BP SMO DIA 0.11 1 

 Consensus 
(BLUE) CRC DIE DEP 0.56 2   Consensus 

(BLUE) BP DIA DIE 0.11 0 

3 Algorithm ALC DIA BP   9 Algorithm ALC DIE WEI   

 Consensus 
(ALL) BP DIA ALC 0.5 3   Consensus 

(ALL) BP STA DIA 0 0 

 Consensus 
(GREEN) BP DIA STA 0.39 2   Consensus 

(GREEN) BP STA DIA 0 0 

 Consensus 
(BLUE) BP DIA DIE 0.39 2   Consensus 

(BLUE) BP STA ALC 0.11 0 

 
Table 1: Comparison of algorithm-ranked preventive services with consensus rankings of the same preventive services by providers. 

For each of our 12 numbered scenarios and their fictitious patient cases, concordance is indicated by the value of LDBRO (higher 
values show more concordance) and by the number shared preventive services in the Top 3 as ranked by the IPP algorithm and by 

the providers. For each scenario, first the Top 3 services ranked by the algorithm are given. Next, the consensus of the algorithm and 
ALL of the providers is given. Finally, the consensus of the algorithm the GREEN provider group and BLUE provider group are given. 
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To interpret the information above in Table 1, here we provide a second table as a legend for 
the preventive services represented by the 16 different three-letter codes in the table. 

 
AAA Abdominal aortic aneurysm screening 
ALC Alcohol use: reduce to healthy levels 
ASA Aspirin use 
BP Blood pressure: add or intensify medication 
BRE Breast cancer screening 
CER Cervical cancer screening (last screen 3 years ago; no prior abnormal screens) 
CRC Colorectal cancer screening 
DEP Depression screening 
DIA Diabetes: add or intensify medication 
DIE Healthful diet & activity counseling 
HIV HIV Screening 
OST Osteoporosis screening 
LUN Lung cancer screening 
STA Statin use 
SMO Stop smoking 
WEI Weight: lose 10 lbs. 

 
Table 2: Legend for three-letter preventive services codes showing the codes and the services they represent in this study 

 
Averaging the LDRBO values shown in Table 1 above for all 12 scenarios yields a mean value 

of .45, corresponding to a moderate level of concordance or agreement between the rankings of 
the IPP algorithm and the provider rankings. The specific points of agreement and diversion can 
be seen by comparing the specific preventive services that would be in the “Top 3” by provider 
consensus and the services that would be in the algorithm’s “Top 3”.   

The rightmost column of Table 1 presents the number of preventive services that appear in both 
the providers’ consensus list and in algorithm’s list. A value of 3 in this column represents 
situations where the algorithm and providers recommended the same “Top 3” preventive medical 
services even if the Top 3 services are ranked in a different order. Looking across all providers, 
for 6 of the 12 cases, the algorithm would have recommended one service that was not in the 
providers’ consensus Top 3; in 3 of 12 cases, the algorithm would have recommended 2 services 
that were not in the providers’ Top 3.  
 
Discussion, Implications, Limitations, and Future Work 
 
Pursuant to Aims 1 and 2 

From a technical perspective, using maturing approaches we have pioneered to modularize, 
package, and combine instances of computable biomedical knowledge, we have demonstrated 
advancement by achieving the first aim of this project. Using a moderately-sized collection of 
Knowledge Objects, some containing payloads with computable inclusion and exclusion criteria 
for USPSTF A and B recommendations and others containing information and computational 
know-how to estimate the life-gain from each recommendation for individuals, we instantiated and 
used a complex IPP algorithm. Moreover, because our technical approach externalizes 
computable biomedical knowledge using shareable Knowledge Objects, the IPP algorithm is not 
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embedded inside a single end-user application. Rather, our implementation of this algorithm using 
the KOs-4-IPP collection stands on its own. This collection can be implemented as a 
straightforward webservice with a RESTful API and accessed by any end-user application of 
interest that way. This is a small breakthrough in making complex, multi-part algorithms comprised  
of computable biomedical knowledge more easily transferable and more widely available. 

 
One key technical advancement for the Knowledge Grid program achieved through this project 

is the development and demonstration of the first Executive Knowledge Object. This important 
step paves the way for future implementations of complex biomedical models comprised of many 
submodels and other information resource subcomponents. Unlike traditional monolithic clinical 
decision support systems (CDSS), our approach is to manage complex, multi-component 
instances of related computable biomedical knowledge as resources and services in their own 
right. Achieving a functional capability to have and use Executive Knowledge Objects is critical 
for externalizing and managing computable biomedical knowledge separately from CDSS.   

 
We have several limitations to report. In our technical work, we encountered barriers specifically 

with the availability and representation of the approximately 100 inputs needed to compute using 
the IPP algorithm instantiated in the KOs-4-IPP collection of Knowledge Objects. Specifically, we 
found that a wide variety of the needed inputs other than demographics and lab values were not 
yet commonly represented using HL7 FHIR resources. We expect that this will change as more 
and different types of FHIR resources become available. For the time being, we developed our 
own proprietary input schema recognizing that it is insufficient and in need of improvement.    

 
Pursuant to Aim 3 

The LRDBO values relating clinicians’ rankings of preventive services to those generated by 
the Taksler algorithm fell into the anticipated “middle range”. The magnitude of this relationship 
strikes a balance between irrelevance, in which case the clinical applicability of the algorithm’s 
rankings would be subject to doubt, and redundancy, in which case the algorithm’s rankings would 
be superfluous. For half of the 12 cases, the algorithm would have recommended one preventive 
service that was not in the providers’ consensus Top 3.  

 
We were, at the same time, impressed by the high level of case-to-case variability in the LRBDO 

values and plan to study, as an unfunded extension of the originally proposed work, to develop 
and publish a statistical model relating LRDBO to the clinical data in each of the case scenarios.  
This analysis will shed light on the characteristics of patients for which providers’ subjective sense 
of what preventive services might be appropriate for that patient varies from the objective 
recommendations of the algorithm. We also plan to extend the study focused on ranking 
concordance by computing the LRDBO value by subject as an alternative analytical strategy to 
the consensus approach reported above. 

 
Limitations 

This study is limited by the breadth and size of the provider sample. These 40 individuals were 
from one state and had, with a small number of exceptions, self-selected to attend a family 
medicine continuing education conference. This convenience sample is not a representative 
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sample of PCPs throughout the nation. Also, a sample larger than forty would result in a more 
precise estimate of the consensus preventive services rankings, and the sources of variability 
around the consensus, than our limited sample size could provide. An additional important 
limitation to the study goes to the external validity of a laboratory study, as opposed to a clinical 
field study, using hypothetical case scenarios, as opposed to actual patients seen in clinical 
environments. 

 
Future Work 

Finally, our work on IPP now extends beyond the three aims of this study. We are pursuing an 
updated IPP algorithm capable of accounting for quality of life as well as longevity. Our current 
plans are to deploy an IPP app in the EHR for a clinical pilot at Cleveland Clinic in early 2022. 
 
Conclusion 
 

Here we report success developing and implementing a complex IPP algorithm to rank order 
USPSTF A and B level recommendations for preventive services for non-pregnant adults. We 
leveraged technical advancements in computable biomedical knowledge management 
capabilities enabling us to externalize and combine multiple instances of computable biomedical 
knowledge to implement the IPP algorithm. Using realistic scenarios, when testing concordance 
between the IPP algorithm’s ranking of preventive service recommendations and provider 
rankings of those same services, we found an intermediate level of concordance. This finding 
suggests that there may be a role for IPP algorithms to help guide selection and enactment of 
preventive services in practice.   
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List of Publications and Products 
 
Planned Publications 
 

We plan to publish two papers based on the results in this report. The first paper will target a 
technical informatics audience and discuss how the complex IPP algorithm was implemented 
successful using a modularized approach founded on Knowledge Objects. The second paper will 
target a health services research and clinician audience and focus on the results and the 
implications of partial concordance between the IPP algorithm’s ranking of preventive medical 
services and the collective ranking of providers. 
 
Online Research Products Produced by This Study 
 
The following products can be accessed simply by making a request to the following email 
address: kgrid-developers@umich.edu 
 

(1) Individual Precision Prevention Collection of Knowledge Objects stored here: 
https://github.com/kgrid-objects  

 
(2) Individual Precision Prevention Collection Web Application stored here: 

https://github.com/kgrid-demos  
 

(3) Core Knowledge Grid Components (e.g., latest Activator) described here: 
https://demo.kgrid.org/  

 

mailto:kgrid-developers@umich.edu
https://github.com/kgrid-objects
https://github.com/kgrid-demos
https://demo.kgrid.org/
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Appendix A 

Individualized Precision Prevention Knowledge Objects  

This project uses a complex, multi-part mathematical model to rank order preventive medicine measures that are 
recommended by the United States Preventive Services Task Force. It provides an individual rank order of these 
measures for each person, based on 97 person-specific features including height, weight, cholesterol, smoking status, 
etc. 

The complex model has been implemented using Knowledge Grid technology. The model is highly modularized 
utilizing a collection of 42 IPP Knowledge Objects. Eight different Knowledge Object schemas (or types) comprise the 
IPP collection. These schemas are listed below, starting with the IPP Executive Object schema. The IPP Executive 
Object is interesting because it is an example of a Knowledge Object that calls on other Knowledge Objects to 
complete a complex series of calculations. 

IPP Knowledge Object Support Computational Flow 

The following depicts an example of one of the IPP processing workflows employed in this collection. 

 

IPP Knowledge Objects (KO) 
The following schemas are designed for this project and are referenced in the service description YAML file using 
$ref. 

● Patient Feature Panel 
A sample patient feature panel is used by the demo app and can be found at: 

● IPP Patient Features Sample 
The collection consists of the following types: 

IPP Executive Object (1 Knowledge Object) 
The executive KO coordinates the workflow for evaluating the risk profile, computing additional derived features, 
retrieving mortality rate, computing life expectancies and life expectancy gains per USPSTF recommendations and 
generating a ranked list of the preventive medicine recommendations. 
The executive KO calls multiple KOs in several stages, aggregates the results, passes the data along and assembles 
the final output containing the ranked recommendation list. 

Recommendation List Knowledge Object (1 Knowledge Object) 
The recommendation list KO contains a list of USPSTF A/B recommendations and takes a patient features panel as 
input to perform the following functions: 

● Checks the patient features against basePopulation to determine if the recommendation is applicable for a 
patient 

● Returns a map of all applicable Recommendations 
● In the response, the relevant KO endpoints are presented in benefitko for the downstream computation 

Life Table Knowledge Object (1 Knowledge Object) 
The life table KO contains the data published by the CDC and it returns the mortality rate based on the patient's race 
and gender. 

https://www.uspreventiveservicestaskforce.org/Page/Name/uspstf-a-and-b-recommendations/
https://demo.kgrid.org/schemas/patientFeature.yaml
https://demo.kgrid.org/schemas/ippPatientFeaturesSample.json
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Patient Total Background Risk Knowledge Object (2 Knowledge Objects) 
The Patient Total Background Risk KOs assess the risk profile based on the patient characteristics. 
Based on Dr. Taksler's model, two KOs are developed: 

● A background relative risk KO: Computes the total all-cause mortality risks as a product of the risks from: 
Tobacco, Obesity and Alcohol; 

● A background absolute risk KO: Computes the total disease-specific mortality risks as a sum from individual 
background risk KOs. 

Each KO calls the relevant individual risk KOs, aggregates the risks and returns the results to the executive KO. 
Each KO also computes certain risks for the target characteristics as needed. For example, for "Decrease Alcohol 
Use", the risks need to be computed both for the patient's current drinking type and for the target type of "Abstain". 

Patient Background Risk Knowledge Object (11 Knowledge Objects) 
Each of The Patient Background Risk KOs assesses a particular risk associated with a condition based on the patient 
characteristics. 
Based on Dr. Taksler's model, two types of background risks are computed: 

● A background relative risk KO: Computes the all-cause mortality risks, including: Tobacco, Obesity and 
Alcohol; 

● A background absolute risk KO: Computes the disease-specific mortality risks. 
Each KO will compute the risk and return the results to the total risk KO. 

USPSTF recommendation Net benefit Knowledge Object (17 Knowledge Objects) 
Each Net Benefit Knowledge Object computes the net benefit by following the recommendation. 
The result is returned to the executive KO. 

Patient's derived feature Calculation Knowledge Object (7 Knowledge Objects) 
A group of derived features are calculated in these KO and returned to the executive KO for later use. 
This type of KO implements a well-known risk model, such as Framingham Risk score for CVD or CHD. 

Life Expectancy Gain Calculation Knowledge Object (1 Knowledge Object) 
This Life Expectancy (LE) Gain KO calculates the life expectancy gain based on the patient's risk-adjusted mortality 
rate set and the mortality rate set if the patient follows a USPSTF recommendation. 
For each recommendation, The KO will call LE Calculator KO four times to compute: Total LE without 
screening/counseling Total LE with screening/counseling LE before next service without screening/counseling LE 
before next service with screening/counseling 

Life Expectancy Calculator (1 Knowledge Object) 

This Life expectancy calculator KO calculates the life expectancy based on a mortality rate set and the time span for 
valid contribution to LE. 

For Total LE, the contribution from the current age till 100 will be included; while for the LE before next service, only 
the contribution from the current till next service time will be included. Next service time will be determined by the 
recommendation screening/counseling frequency per the recommendation. 
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Appendix B: 
 

The Length-dependent rank-biased overlap (LDRBO) statistic 
 
Given a pre-specified set of 𝐾𝐾 items with integer labels 1, … ,𝐾𝐾, an ordered list of these 𝐾𝐾 items is any permutation 

of the integers, where the first integer in the permutation corresponds to the highest ranked item, the second integer to 
the second highest ranked item, and so forth. For comparing two ordered lists of all 𝐾𝐾 items, classical measures of 
correlation like Spearman’s 𝜌𝜌 or Kendall’s 𝜏𝜏 are appropriate. In contrast, these statistics are not suitable for comparing 
two partial lists, and they are not defined when comparing two partial lists of unequal length. 

 
To that end, Boonstra proposed the LDRBO similarity measure. The LDRBO is itself an extension of the rank-

biased overlap (RBO) of Webber designed specifically for lists of finite length. The LDRBO is a measure to compare 
the similarity of two ordered lists, even when they have unequal lengths. 

 
Let 𝐱𝐱 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥ℓ𝑥𝑥} and 𝐲𝐲 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦ℓ𝑦𝑦} be two ordered lists of some library of items of size 𝐾𝐾, where ℓ𝑥𝑥 and 

ℓ𝑦𝑦 denote the length of 𝐱𝐱 and 𝐲𝐲, respectively, with 0 < min(ℓ𝑥𝑥, ℓ𝑦𝑦) ≤ max(ℓ𝑥𝑥, ℓ𝑦𝑦) ≤ 𝐾𝐾. Given some prespecified 
positive-valued tuning parameter 𝜓𝜓, the LDRBO is defined as 

LDRBO𝜓𝜓(𝐱𝐱,𝐲𝐲) =
∑ 𝜓𝜓𝑑𝑑max{ℓ𝑥𝑥,ℓ𝑦𝑦}
𝑑𝑑=1 |𝐱𝐱1:𝑑𝑑 ∩ 𝐲𝐲1:𝑑𝑑|/𝑑𝑑

∑ 𝜓𝜓𝑑𝑑max{ℓ𝑥𝑥,ℓ𝑦𝑦}
𝑑𝑑=1

. 

 
The expression |𝐱𝐱1:𝑑𝑑 ∩ 𝐲𝐲1:𝑑𝑑| denotes the size of the set-theoretic intersection of the first 𝑑𝑑 elements of 𝐱𝐱 and 𝐲𝐲. 
 
In words, the LDRBO is a number ranging between 0 and 1 defined as the weighted average of agreement across 

all possible depths 𝑑𝑑 between the two lists, where ‘agreement’ is defined as the number of the first 𝑑𝑑 elements 
common to both lists (or the entire list if 𝑑𝑑 exceeds the list length) divided by 𝑑𝑑. The tuning parameter 𝜓𝜓 ∈ (0,∞) 
controls the extent of rank-biasedness; smaller values correspond to greater ranked biasedness and larger values to 
less ranked biasedness. As the value of 𝜓𝜓 is made closer to zero, the resultant value of LDRBO approaches 0 if the 
two lists disagree on their top ranked item or 1 if the two lists agree: 

LDRBO𝜓𝜓↓0(𝐱𝐱,𝐲𝐲) = 1[𝑥𝑥1=𝑦𝑦1] 
Conversely, as 𝜓𝜓 is made larger, the value of LDRBO approaches the number of items common to both lists 

divided by the longer of the of the two lists: 

LDRBO𝜓𝜓↑∞(𝐱𝐱,𝐲𝐲) =
|𝐱𝐱 ∩ 𝐲𝐲|

max{ℓ𝑥𝑥, ℓ𝑦𝑦}
. 

In between, a value of 𝜓𝜓 = 1 corresponds to a simple average across all agreements, and expression for LDRBO 
in this case reduces to 

LDRBO𝜓𝜓=1(𝐱𝐱,𝐲𝐲) =
∑ |max{ℓ𝑥𝑥,ℓ𝑦𝑦}
𝑑𝑑=1 𝐱𝐱1:𝑑𝑑 ∩ 𝐲𝐲1:𝑑𝑑|/𝑑𝑑

max{ℓ𝑥𝑥, ℓ𝑦𝑦}
. 

 
In this document, we primarily use 𝜓𝜓 = 1, such that when we use the generic term ‘LDRBO’ without an explicit 

value of 𝜓𝜓 given, it should be read as LDRBO𝜓𝜓=1. 
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Appendix C: 

The Knowledge Grid and How it Works 
 

The Knowledge Grid (KGrid) is an open-source platform for managing and running computable biomedical 
knowledge (CBK). 

The kind of knowledge that works well in the KGrid might be risk calculators, computable guidelines, or 
reference and lookup tables — anything that can be represented as a set of services. A researcher or 
developer writes code to implement the knowledge as one or more functions, and the resulting code is 
packaged along with service and deployment descriptions as a knowledge object (KO). 

The fundamental thing the Knowledge Grid does is allow you to externalize key pieces of computable 
biomedical knowledge that would otherwise be embedded in applications, EHRs, databases, and backend 
services. This makes it easier to reuse and update that knowledge, across time, for multiple channels, and 
in many organizations. 

Basics 

KGrid uses a "plugin" model. An activator component loads KOs at runtime, extracts and deploys the code 
to a suitable runtime environment, exposes the service the code implements as a simple RESTful API, and 
routes requests and responses. The service description (using OpenAPI 3) also specifies the inputs and 
outputs for the KO. 

There is also a library component that can be used to manage and browse KOs. Since the activator and the 
library share a storage mechanism, they are typically deployed together. But one library can serve as a 
source of KOs for many activators, and one activator can import KOs from many libraries. 

 
How it works 

Currently, KGrid supports the embedded JavaScript engine, Nashorn, and a remote Node.js runtime. 
Additional runtimes are planned including an external Python environment, and cloud services like AWS 
Lambda and Google Cloud for serverless deployments. Knowledge objects are packaged as .zip files 
containing: 

● a metadata file (metadata.json) containing identifiers and simple descriptive elements; the structural 
metadata follows the Knowledge Object Information Ontology (KOIO) 

● code artifact(s) 
● an OpenAPI .yaml document describing the service interface(s) the object provides 
● a deployment descriptor .yaml document specifying the runtime environment(s), the entry point, etc. 
● additional metadata if applicable 

The activator and library are Spring Boot microservices written in Java. The library frontend is a Vue Single 
Page Application (SPA). They can be deployed directly in most environments. We also provide docker 
images for container scenarios. 

https://en.wikipedia.org/wiki/Nashorn_(JavaScript_engine)
https://github.com/kgrid/kgrid-node-express-adapter
https://vuejs.org/
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